پارامترهای ABCD را می توان، همانند پارامترهای S، برای توصیف شبکه های مایکروویو استفاده کرد. تمامی طراحان مایکروویو با پارامترهای S آشنا هستند. ما روزانه از آنها برای گرفتن داده ها، نوشتن و ارایه گزارش استفاده می کنیم. پس لزوم استفاده از پارامترهای ABCD چیست?
پاسخ ساده است. ماتریس ABCD را میتوان برای تحلیل دو شبکه سری، به در هم ضرب کرد. نمی توان پارامترهای دو شبکه سری را از روی پارامترهای S تک تک آنها محاسبه کرد. به همین دلیل ابتدا پارامترهای S را به پارامترهای ABCD تبدیل می کنند سپس محاسبات را انجام می دهند.
فرمول تبدیل پارامترهای S به پارامترهای ABCD به صورت زیر است:
فرمول تبدیل پارامترهای ABCD به پارامترهای S به صورت زیر است:
در الکترو مغناطیس کلاسیک تعریف میدان مغناطیسی به صورت «میدان حاصل از بار الکتریکی در حال حرکت در اطراف آن» میباشد. به بیان سادهتر میدان مغناطیسی حاصل تأثیر دو میدان الکتریکی (مثلاً دو بار مثبت و منفی) بر روی هم است که منجر به درست شدن یک میدان مغناطیسی میشود.
میدان مغناطیسی از تک بارها، سیمهای حامل جریان، جهت گیری دوقطبیهای مغناطیسی (آهنرباهای دایمی)، جریان سیال رسانا (میدان مغناطیسی زمین) ایجاد میشوند.
نقشه سادهای از میدان مغناطیسی کره زمین که منبع میدان مغناطیسی زمین را به صورت یک آهنربا نشان میدهد. قطب شمال زمین در نزدیکی بالای تصویر و قطب جنوب نزدیک پایین آن است. توجه کنید که قطب جنوب آهنربا در اعماق داخل زمین در زیر قطب جنوب مغناطیسی آن است. میدان مغناطیسی زمین حاصل عبور جریان دائم الکتریکی در هسته مایع خارجی آن است
در الکترو دینامیک نسبیتی بین میدان الکتریکی و میدان مغناطیسی تفاوتی وجود ندارد و تعریف میدان الکترو مغناطیسی به صورت «اثر بار الکتریکی در اطراف آن» تعریف میشود. چون حرکت کاملاً نسبی در نظر گرفته میشود و نمیتوان بین بار ثابت و بار متحرک تفاوتی قایل شد (متحرک بودن یا ثابت بودن برای ناظرهای مختلف تفاوت میکند). نیروی حاصل از این میدان را نیروی لورنتس میخوانند.
به بیانی دیگر میدان مغناطیسی میدانی است که توسط یک جسم مغناطیسی یا ذرات، و یا با تغییر میدان الکتریکی، تولید شدهاست و توسط نیرویی که روی دیگر مواد مغناطیسی و یا حرکت بار الکتریکی اعمال میشود شناسایی میشود. میدان مغناطیسی در هر نقطه ی داده شده توسط هر دو پارامتر جهت و شدت (یا مقاومت) مشخص میشود، که به عنوان یک میدان برداری شناخته میشود. اشیایی که خود میدان مغناطیسی تولید میکنند آهنربا نامیده میشوند. آهنرباها توسط نیروها و گشتاورهایی که توسط میدانهای مغناطیسی تولید میکنند بر یکدیگر تاثیر میگذارند. آهنربا معمولاً خود را در جهت میدان مغناطیسی موضعی تراز میکند. قطبنماها از این اثر برای اندازهگیری جهت میدان مغناطیسی موضعی، تولید شده توسط زمین استفاده میکنند. ریاضیات پیچیده که میدان مغناطیسی یک شی را نشان میدهد با استفاده از خطوط میدان مغناطیسی نشان داده میشوند. این خطوط صرفاً یک مفهوم ریاضی است وبه صورت فیزیکی وجود ندارد. با این حال، برخی پدیدههای فیزیکی از قبیل تراز شدن برادههای آهن در یک میدان مغناطیسی، به مانند خطوط در یک الگوی مشابه با خطوط فرضی میدان مغناطیسی از جسم را تولید میکند. جهت خطوط میدان مغناطیسی که تراز دلخواه برای براده ی آهنی که بر روی کاغذی که بر روی یک نوار آهنربا قرار دارد، پاشیده شدهاست. نشان میدهد. جاذبه ی متقابل قطب مخالف براده آهن منجر به تشکیل خوشههای دراز از براده در امتداد خطوط میدان شدهاست.
جریان الکتریسیته و انتقال شار الکتریکی میدان مغناطیسی تولید میکند. حتی میدان مغناطیسی از یک ماده مغناطیسی را میتوان به عنوان مدل حرکت شار الکتریکی الگو گرفت. میدان مغناطیسی نیز بر روی حرکت شار الکتریکی نیرو وارد میکند. میدانهای مغناطیسی در داخل و با توجه به مواد مغناطیسی میتواند کاملاً پیچیده باشد. میدان مغناطیسی با مواد دیگر اثر متقابلی دارد، بنابر این میدان مغناطیسی متقابلی با مواد دیگر ایجاد میکند. شرح میدان مغناطیسی در داخل آهنربا شامل دو رشته جداگانهاست که میتواند هر دو به نام میدان مغناطیسی، میدان مغناطیسی B و میدان مغناطیسی H نامیده شود. این ها توسط یک میدان سوم که توصیف حالت مغناطیسی مواد مغناطیسی در درون آن هاست، که مغناطیس کنندگی نامیده میشود تعریف میشود. انرژی مورد نیاز برای ایجاد میدان مغناطیسی میتواند زمانی که میدان از بین میرود اصلاح شود؛ و این انرژی میتواند، به عنوان «ذخیره شده» در میدان مغناطیسی در نظر گرفته شود. انرژی ذخیره شده در مواد مغناطیسی به مقادیر B و H بستگی دارد. میدان الکتریکی میدانی است که توسط شار الکتریکی ایجاد شدهاست و این میدانها به طور تنگاتنگی به میدان های مغناطیسی مربوط میشوند؛ تغییر در میدان مغناطیسی میدان الکتریکی و تغییر در میدان الکتریکی میدان مغناطیسی تولید میکند. (رجوع کنید به الکترومغناطیس) ارتباط کامل بین میدانهای الکتریکی و مغناطیسی و جریان و شار که آن ها را ایجاد میکنند، توسط مجموعهای از معادلات ماکسول توصیف میشوند. با در نظرگرفتن این ارتباط خاص، میدانهای الکتریکی و مغناطیسی دو جنبهٔ مرتبط از یک موضوع منفرد، به نام میدان الکترو مغناطیسی هستند. یک میدان الکتریکی خالص، در یک چارچوب مرجع، به عنوان ترکیبی از هر دو میدان الکتریکی و میدان مغناطیسی که در یک چارچوب مرجع حرکت میکند، مشاهده میشود. در فیزیک کوانتومی، میدان مغناطیسی خالص (و الکتریکی) را توسط اثرات ناشی از فوتونهای مجازی میتوان درک کرد و در زبان مدل استاندارد، نیروی الکترومغناطیسی در تمام مظاهر توسط فوتون واقع میشود. در اغلب موارد این شرح میکروسکوپی مورد نیاز نمیباشد چرا که نظریه ی کلاسیک ساده، قانع کنندهاست؛ تفاوت تحت میدان با انرژی پایین تر در اکثر شرایط قابل اغماض است.
میدانهای مغناطیسی در جوامع قدیمی و مدرن استفادههای بسیار داشتهاست. زمین میدان مغناطیسی خود را تولید میکند؛ که در جهت یابی ای که توسط قطب شمال قطب نما که به سمت قطب جنوب میدان مغناطیسی زمین منحرف شدهاست، بسیار حایز اهمیت است. از چرخش میدان مغناطیسی در موتور الکتریکی و ژنراتور بهره گرفته شدهاست. نیروهای مغناطیسی ارائه دهنده ی اطلاعاتی در مورد حرکت شار از طریق اثر هال هستند. تداخل میدانهای مغناطیسی در دستگاههای برقی مانند ترانسفورماتورها در نظم حوزههای مغناطیسی مورده مطالعه قرار گرفتهاند. مطالعه میدان مغناطیسی به عنوان یک موضوع مجزا از آهنربا در قرن ۱۳ هنگامی که پترو پرگرینوس د ماریکور میدان مغناطیسی آهنربای کروی را مطالعه کردو فرض نمود که زمین خود یک آهنربا است. آغاز شد. تمایز مدرن بین میدانهای B و H در قرن ۱۹ کشف شد. رابطه بین میدانهای الکتریکی و مغناطیسی در مجموعهای از معادلات ماکسول در نیمه دوم قرن ۱۹ میلادی کشف شد؛ و مفهوم الکترومغناطیس متولد شد. روندی که در پشت معادلات ماکسول قرار داشت در نیمه اول قرن ۲۰ مشخص شد، هنگامی که ارتباط خاص آن ها نشان داده شد.. شرح کاملی از الکترومغناطیس، الکترودینامیک کوانتومی و یا QED نامیده میشود، که شامل مکانیک کوانتومی که در اواسط قرن ۲۰ کشف شد، است.
اگر چنانچه به جای یک بار نقطهای چندین بار نقطهای وجود داشته باشد و بخواهیم میدان حاصل از آنها را محاسبه کنیم، برای این منظور، میدان حاصل از هر بار را تعیین نموده و همه را به صورت برداری جمع میکنیم.
اما در مورد توزیع بارها باید از یک رابطه انتگرالی استفاده کنیم. بدیهی است که در مورد توزیع حجمی بار انتگرال حجمی بوده و در مورد توزیع سطحی بار، انتگرال سطحی خواهد بود.
فرض کنید که یک بار الکتریکی به اندزه q در نقطهای از فضا که با بردار مکان r مشخص میشود، قرار داشته باشد. حال میخواهیم میدان الکتریکی حاصل از این بار را در نقطه دیگری که با بردار مکان ('r) مشخص میشود، تعیین کنیم. طبق تعریف یک بار نقطهای مثبت آزمون در این نقطه قرار میدهیم. فرض کنید که اندازه بار آزمون ('q) باشد. در این صورت از طرف بار q بر این بار آزمون نیرویی وارد میشود که از قانون کولن به صورت زیر محاسبه میشود:
محاسبه میشود. چون نیروی F یک کمیت برداری است، بنابراین علاوه بر اینکه مقدار آن از رابطه گفته شده حاصل میشود، دارای یک جهت نیز هست که جهت آن با رابطه
به صورت مفهومی، معادلات ماکسول توصیف می کند چگونه بارهای الکتریکی و جریان های الکتریکی به عنوان منابع برای میدان های الکتریکی و مغناطیسی عمل می کنند . علاوه بر این، آن را توضیح می دهد که چگونه یک میدان الکتریکی متغیر با زمان یک میدان مغناطیسی متغیر با زمان تولید می کند و بالعکس. (برای توصیف ریاضی از این قوانین پایین را ببینید.) معادله از چهار معادله، دوتا از آنها، قانون گاوس و قانون گاوس برای مغناطیس، توصیف چگونه میدان ها از بارها سرچشمه می گیرند. (برای میدان مغناطیسی شارژ مغناطیسی و در نتیجه خطوط میدان های مغناطیسی در هیچ جا نه ابتدا و نه انتها وجود ندارد.).دو معادله دیگر توصیف می کند که چگونه میدان به دور منابع مربوطه در گردش می باشند؛ میدان مغناطیسی در اطراف جریان های الکتریکی و میدان الکتریکی مختلف در قانون آمپر با اصلاح توسط ماکسول، در حالی که میدان الکتریکی در اطراف میدان های مغناطیسی مختلف در قانون فارادی "گردش"می کند.
قانون گاوس ارتباط بین میدان الکتریکی و بارهای الکتریکی را توصیف می کند که به موجب آن: خطوط میدان الکتریکی به دور از بارهای مثبت و به سوی بار منفی است. در زمینه شرح خطوط میدان، خطوط میدان الکتریکی شروع تنها در بارهای مثبت الکتریکی و انتهای آن در بارهای منفی الکتریکی است. شمارش تعداد خطوط میدان در یک سطح بسته، بنابراین، کل بار احاطه شده توسط آن سطح است . به اصطلاح فنی تر،آن مربوط شار الکتریکی را از طریق هر سطح بسته فرضی "سطح گاوسی" به بار الکتریکی محصور است.
قانون مغناطیسی گاوس بیان می کند که هیچ "بار مغناطیسی" وجود ندارد(تک قطبی های مغناطیسی هم نامیده می شود)، شبیه به بارهای الکتریکی است. به جای آن، میدان مغناطیسی به دلیل مواد پیکربندی به نام دو قطبی ساخته شدهاند. دو قطبیهای مغناطیسی به عنوان بهترین حلقههای جریان نشان داده شده، اما شبیه بارهای مغناطیسی مثبت و منفی، جداناپذیر به یکدیگر متصل میشوند، هیچ بار مغناطیسی خالصی وجود ندارد. در خطوط میدان، این معادله میگوید که خطوط میدان مغناطیسی و نه شروع میشوند و نه پایان می پذیرند، بلکه حلقهها و گسترش تا بی نهایت ایجاد میکند و برگشت میکند. به عبارت دیگر، هر خط میدان مغناطیسی که وارد یک حجم میشوند باید در جایی از آن خارج شوند. معادل فنی جملات این است که مجموع شار مغناطیسی را از طریق هر سطح گاوسی، صفر است، یا این که میدان مغناطیسی یک میدان برداری سلنوئیدی است.
قانون فارادی توصیف می کند که چگونه میدان مغناطیسی متغیر با زمان یک میدان الکتریکی " القاء " میکند. این جنبه از القای الکترومغناطیسی باعث ایجاد عامل پشت بسیاری ژنراتورهای الکتریکی است: به عنوان مثال، چرخش آهنربا باعث ایجاد زمینه تغییر مغناطیسی، که باعث تولید میدان الکتریکی در نزدیکی سیم است. (توجه : دو معادله ی مرتبط با هم وجود دارد که قانون فارادی نامیده میشود.شکل استفاده شده در معادلات مکسول همیشه معتبراست اما محدود تر از فرم عمومی آن توسط مایکل فارادی است.)
قانون آمپر با تصحیح ماکسول بیان میکند که میدان مغناطیسی را می توان به دو روش تولید کرد:با جریان الکتریکی (این اصل "قانون آمپر" بود) و با تغییر میدان الکتریکی (این "تصحیح ماکسول" بود). تصحیح ماکسول به قانون آمپر بسیار مهم است: آن را نشان می دهد که نه تنها نتیجه تغییرات میدان مغناطیسی القای میدان الکتریکی است، بلکه تغییر الکتریکی موجب القای یک میدان مغناطیسی است. بنابراین، این معادلات به" امواج الکترومغناطیسی " اجازه میدهد به صورت خودکار از بین فضای خالی عبور کنند. (مراجعه کنید به معادله موج الکترومغناطیسی.) سرعت محاسبه شده برای امواج الکترومغناطیسی، که میتواند از آزمایشهای بار و جریان پیش بینی شود، دقیقاً منطبق با سرعت نور و در واقع، نور یک شکل از پرتوهای الکترومغناطیسی است (به عنوان اشعه های ایکس، امواج رادیویی، و ...). ماکسول ارتباط بین امواج بین الکترمغناطیس و نور را در سال 1861 فهمید . به دنبال آن متحد شدن تئوری الکترو مغناطیس و اپتیکها.