تخیله الکتریکی یا ElectroStatic Discharge یا به اختصار ESD، به اشکال متفاوتی روی می دهد. ESD می تواند بازه ای بین 50 ولت تا ده ها هزار ولت را پوشش دهد. توان واقعی تخلیه شده در واقع به اندازه اندک است که هیچ خطری برای اشخاصی که در مسیر تخیله الکتریکی قرار دارند ایجاد نمی شود. معمولا تخلیه الکتریکی معادل چندین هزار ولت لازم است که یک فرد متوجه رخ دادن یک ESD به صورت جرقه شود. مسئله ESD وقتی به وجود می آید که حتی یک تخلیه الکتریکی بسیار کوچک باعث نابود شدن نیمه هادی ها می شود. بار الکتریکی استاتیکی برابر با هزاران ولت بوده و این ولتاژ بسیار بالا باعثه یونزیه شده هوا و شکسته شده سایر مواد می شود.
در حین تخلیه الکتریکی تجهیزات زمانی آسیب می بینند که در مسیر ESD قرار گرفته باشند. بسیار از اجزا مانند دیودهای توان، بسیار قدرتمند بوده و می توانند در برابر تخلیه الکتریکی مقاومت کنند. ولی اگر بخشی دارای مساحت کوچک یا ضخامت اندک باشد، ولتاژ می تواند آن بخش از نیمه هادی را نابود کند. در هنگام تخلیه الکتریکی جریان در بازه های زمانی نانوثانیه و میکروثانیه، بسیار زیاد است. همین باعث ایجاد صدمات دائمی به قطعات می شود. قطعه ممکن است کاملا از کار افتاده و نابود شود. ولی ممکن است باعث تخریب پنهان قطعه شود. چنین قطعه ای ممکن است ساعت ها، روزها و حتی ماه ها کار کرده و سپس از کار بیافتد.
بعضی اوقات به این قطعات "مردگان متحرک" گفته می شود، زیرا کار می کنند ولی نه بد کار می کنند. در شکل زیر یکی از نمونه های آسیب پنهان نشان داده شده است.
حتی قطعه هایی که مقاوم فرض می شوند ممکن است در برابر ESD در خطر باشند. ترانزیستورهای دو قطبی، اولین تقویت کننده های حالت جامد نیز مصون نیستند. اگرچه مقاومت بیشتری از خود نشان می دهند. برخی از قطعات پرسرعت مدرن حتی با ولتاژهای 3 ولت نیز تخریب می شوند.
جلوگیری از آسیب: قبل از اینکه بتوانیم از ESD جلوگیری کنیم باید بدانیم چه عاملی باعث به وجود آمدنش می شود. در حالت کلی مواد اطراف محیط کار را می توان به سه گروه دسته بندی کرد. این گروه ها شامل مولد های ESD، خنثی نسبت به ESD و تلف کننده یا هادی ESD هستند. مواد مولد ESD در واقع تولید کننده های فعال استاتیکی از قبیل پلاستیک، موی گربه، الیاف پلی استر و غیره هستند. عایق ها عموما مواد خنثی نسبت به ESD بوده و علاقه ای نسبت به تولید یا نگه داشتن بارهای الکتریکی ندارد. موادی که در این گروه قرار می گیرند از قبیل چوب، کاغذ و پنبه هستند. قرار گرفتن در این گروه به این معنی نیست که نمی توانند مولد ESD باشند ولی ریسک آن ها نسبت به بقیه حداقل مقدار ممکن است. به عنوان مثال چوب و محصولات چوبی جاذب رطوبت بوده که می تواند آن ها را اندکی رسانا کند. این امر درباره بسیاری از مواد ارگانیک صادق است. یک میز بسیار پولیش شده در این گروه قرار نمی گیرد زیرا پولیش معمولا پلاستیک بوده که عایق بسیار کارامدی است.
رساناهای ESD بسیار مشخص و مشهود هستند، همگی وسایل فلزی در این دسته قرار می گیرند. دسته های پلاستیکی می توانند ایجاد مشکل کنند ولی یک فلز اگر بر روی سطح زمین شده قرار داشته باشد، بار الکترواستاتیک را به همان سرعتی که ایجاد شده از خود عبور داده و به زمین انتقال می دهد. مواد دیگر نیز وجود دارد مانند پلاستیک هایی که طوری طراحی شده اند که رسانا باشند. این مواد در دسته اتلاف کننده های ESD قرار می گیرند. خاک و سیمان نیز رسانا بوده و در دسته اتلاف کننده های ESD قرار می گیرند.
کارهای زیادی وجود دارند که باعث ایجاد الکتریسیته ساکن می شوند، و شما نیاز دارید برای کنترل ESD از آن ها اطلاع داشته باشید. عمل ساده ی کشیدن سیم تلفن می تواند باعث ایجاد ولتاژهای بسیار بالا شود. تکان خوردن بر روی صندلی نیز می تواند الکتریسیته ساکن تولید کند. در حقیقت هر عملی که باعث به هم ساییده شدن دو سطح به یکدیگر شود می تواند باعث تولید بار ساکن شود. به همین دلیل روشی باید وجود داشته باید که این ولتاژ را پیوسته تخیله کند. در هنگام کار با قطعات باید از حضور و استفاده از موادی که بالقوه تولید کننده ای استاتیک های بالا هستند، خودداری کرد.
پلاستیک ها معمولا تولید کننده های الکتریسیته ساکن هستند. به همین دلیل پلاستیک های رسانا ابداع شدند. راه معمولی برای تولید پلاستیک رسانا اضافه کردن ناخالصی ای به آن بوده که خواص عایقی آن را به رسانایی تبدیل کند. با این حال این پلاستیک ها هنوز هم دارای مقاومتی معادل میلیون ها اهم بر اینچ مربع هستند. این پلاستیک ها همچنین برای استفاده به عنوان رسانا در کاربردهایی که کاهش وزن اهمیت زیادی دارد ساخته شده اند. یکی از این کاربردها استفاده در صنعت هوانوردی به منظور سبک سازی هرچه بیشتر هواپیما است.
یک مزیت کاربردی قطعات فعال توانایی تقویت کردن شان است. چه قطعه کنترل شده با جریان باشد و چه کنترل شده با ولتاژ، مقدار توان مورد نیاز برای کنترل جریان خروجی بسیار کمتر از توان خروجی ناشی از جریان عبوری از قطعه است. به بیان دیگر یک قطعه فعال فقط دارای ویژگی کنترل الکتریسیته با الکتریسیته نیست، بلکه این قطعه اجازه می دهد که یک مقدار ناچیز از الکتریسیته (ولتاژ یا جریان سیگنال کنترلی) مقدار بسیار بزرگ و زیادی از الکتریسیته (جریان خروجی) را کنترل کند.
به دلیل همین تفاوت در توان کنترل کننده و کنترل شده، تجهیزات و قطعات فعال را می توان برای بدست آوردن توان بسیار زیاد (کنترل شده) با اعمال مقدار بسیار کمتر از توان (کنترل کننده) استفاده کرد. به این رفتار تقویت گفته می شود.
یکی از بنیادی ترین قوانین فیزیک به ما می گوید که انرژی نه تولید و نه نابود می شود. این قانون به قانون پایستگی انرژی معروف بوده و هیچ استثنایی برای آن تا کنون دیده نشده است. اگر این قانون درست است - حجم وسیعی از آزمایشات این نتیجه گیری را پیشنهاد می کنند- بنابراین غیر ممکن است قطعه ای بسازیم که با دریافت مقدار اندکی انرژی در خروجی مقدار بسیار زیادی انرژی تحویل دهد. تمامی ماشین ها، و همین طور مدارات الکترونیکی و الکتریکی، دارای ماکزیمم راندمان 100 درصد هستند. در بهترین حالت توان خروجی با توان ورودی برابر است.
توان خروجی یک ماشین می تواند به اندازه توان ورودی باشد، ولی هرگز نمی تواند از آن بیشتر باشد. حد بالای راندمان 100 درصد است. معمولا، ماشین ها به نزدیکی های این حد هم نمی رسند. و بخش اعظمی از انرژی ورودی را به صورت دما به محیط پیرامون انتقال می دهند.
یک ماشین واقعی بخشی از انرژی ورودی خود را در فرآیند تولید انرژی در خروجی، به صورت دما از دست می دهد.
افراد بسیاری تلاش های نافرجامی برای ساخت و طراحی ماشینی که توان خروجی آن بیشتر از توان ورودی اش باشد، انجام داده اند. این ماشین حرکت دائمی در صورت ساخت نه تنها قانون پایستگی انرژی را نقض می کند بلکه سرمنشا انقلاب عظیمی در تکنولوژی خواهد بود، زیرا این ماشین می تواند توان ورودی خود را تامین کرده و توان بیشتری به صورت رایگان تولید کنند.
یک کلاس از ماشین ها که تقویت کننده نامیده می شوند، می توانند مقدار اندکی از سیگنال ورودی را به توان بسیار بیشتری تبدیل کنند. کلید درک این چگونگی عملکرد تقویت کننده ها، بدون نقض قانون پایستگی انرژی ، در نحوه ی عملکرد آن ها نهفته است.
چون تجهیزات فعال توانایی کنترل توان های بالای الکتریکی با استفاده از یک سیگنال کنترلی با توان اندک را دارند. آن ها را در مدار طوری باید در نظر گرفت که سیگنال ورودی خود را در خروجی با توان بیشتر ایجاد کرده و برای این کار از یک منبع توان خارجی استفاده می کنند. این قطعه با این تعریف می تواند سیگنال با توان اندک ورودی را به سیگنالی با توان بسیار زیادتر تبدیل کند. قانون پایستگی انرژی نقض نمی شود زیرا توان لازم برای انجام این کار از یک منبع توان دیگر گرفته می شود. تقویت کننده ها نه انرژی تولید می کننده و نا آن را از بین می برند، بلکه آن را تقویت می کنند.
یک تقویت کننده سیگنال کوچک ورودی را به سیگنال بزرگتر در خروجی تبدیل می کند، و منبع انرژی این کار یک منبع توان خارجی است. به بیان دیگر یک قطعه فعال با استفاده از قابلیت کنترل جریان، از توان DC منبع خارجی استفاده کرده و سیگنال ورودی را با توانی بسیار بیشتر در خروجی ایجاد می کند. ترانزیستور یا هر قطعه فعال موجود در یک تقویت کننده یک کپی بسیار بزرگتر از سیگنال ورودی با استفاده از توان DC باتری یا هر منبع خارجی تولید می کند. تقویت کننده ها نیز مانند تمامی ماشین های دیگر دارای راندمان هستند. و نهایت راندمان تقویت کننده ها نیز 100 درصد خواهد بود. معمولا تقویت کننده های الکترونیکی دارای کارایی بسیار کمتری از این حد بوده و بخش قابل توجهی از توان را به صورت دما تلف می کنند.
در این پست ویدیوی گام به گام طراحی یک تقویت کننده در باند 60 گیگاهرتز برای استفاده در 5G توسط نرم افزار ADS آورده شده است.
Qorvo خانواده جدیدی از ترانزیستورهای die GaN خود را معرفی کرد. این خانواده برای مصارف مخابراتی، راداری و مصارف دفاعی بسیار مفید هستند.
Qorvo هم اکنون بر روی ساخت مدل خطی و غیر خطی این قطعات برای طراحان کار می کند.