مهندسی میدان و مایکروویو

انجمن مهندسی مایکروویو ایران

مهندسی میدان و مایکروویو

انجمن مهندسی مایکروویو ایران

چرا 50 اهم؟

بسیاری از تجهیزات مایکروویو در سیستم های 50 اهمی کار می کنند (تجهیزاتی در سیستم های 75 اهم کار می کنند). اکنون این سوال مطرح است، چرا این استاندارد انتخاب شده است؟

استاندارد سازی امپدانس پنجاه اهم به زمان تولید و توسعه کابل های کواکسیال برای استفاده در فرستنده های رادیویی کیلو واتی 1930 بر می گردد. یک توضیح مناسب برای انتخاب امپدانس 50 اهم در کتاب تیوب های مایکروویو گیلمر وجود دارد. پاسخ سریع مربوط به ایجاد تعادل مناسب توسط امپدانس 50 اهم،  بین ماکزیمم توان انتقالی و تلفات اندک در  کابل های کواکسیال با دی الکتریک هوا  است.


تلفات کابل بر حسب امپدانس: برای سیگنال های RF، مقاومت در واحد طول یک کابل کواکسیال توسط مساحت پیرامونی فلز رسانای ناشی از اثر عمق پوستی و نه تمامی سطح مقطع محاسبه می شود. در زیر معادله تلفات در واحد طول برای کابل های کواکسیال برای مقدار دی الکتریک و فلز رسانای دلخواه آورده شده است:

شما تصور می کنید که یک رسانای ضخیم باید همیشه دارای تلفات عبوری کمتری باشد زیرا دارای مساحت پیرامونی بیشتری (مولفه یک بر روی d  باعث کاهش تلفات با افزایش d  می شود)  است. ولی شما اشتباه می کنید، زیرا امپدانس مشخصه کابل دارای مولفه log(D/d) در مخرج بوده که باعث افزایش امپدانس مشخصه با افزایش d می شود. 

به منظور رسم منحنی تلفات در واحد طول بر حسب امپدانس مشخصه، به رابطه امپدانس مشخصه کابل کواکسیال توجه می کنیم. امپدانس مشخصه یک کابل کواکسیال به صورت زیر محاسبه می شود:

اکنون می توانیم منحنی تلفات در واحد طول بر حسب امپدانس مشخصه را رسم کنیم. با رسم این مشخصه متوجه می شویم که مقدار تلفات در واحد طول در امپدانس 77 اهم، برای هر کابلی با دی الکتریک هوا، به حداقل خود می رسد.

ادامه دارد....


کانال تلگرام

صفحه Linkedin


دسیبل

یک دسیبل نسبت لگاریتمی متداولی از دو سطح توان RF یا دو سطح ولتاژ RF است (معمولا سطوح توان یا ولتاژ ورودی و خروجی). مزیت استفاده از محاسبات لگاریتمی در این است که ضرب به جمع و تقسیم به تفریق تبدیل می شود. فرمول محاسبه نسبت توان ها به dB به صورت زیر است:

(10xlog(power level2/power level1

(10xlog(voltage level2/voltage level1

البته توجه داشته باشید که در مایکروویو ما بیشتر به سطوح توان اهمیت می دهیم تا سطوح ولتاژ، به همین دلیل سیگنال های مایکروویو بیشتر با واحد میلی وات سنجیده می شوند و نه میلی وات. در صورت دانستن امپدانس مشخصه سیستم می توان به راحتی توان را به ولتاژ و یا ولتاژ را به توان تبدیل کرد. 


مفهوم دسیبل: دسیبل یک راه بسیار مناسب برای صحبت درباره افزایش (گین) یا کاهش (تلفات) بدون صحبت درباره مقدار حقیقی توان یا ولتاژ است. به خاطر داشته باشید که دسیبل یک واحد مانند میلی متر یا اینچ نیست، بلکه یه نسبت است. یک مقدار منفی dB بیانگر تلفات یا کاهش سطح توان و یک مقدار مثبت dB بیانگر افزایش بهره و یا افزایش توان سیگنال است. هنگامی که در مورد تلفات به dB صحبت می کنیم، متداول است که علامت منفی را بیان نکنیم. مثلا یک تضعیف کننده 10dB دارای 10dB تلفات بوده، در حالیکه دارای 10- دسیبل بهره است. 


در حوزه مایکروویو از واحدهای dBm (دسیبل نسبت به میلی وات) و یا dBW (دسیبل نسبت به وات) استفاده می شود. باز هم همان محاسبات لگاریتمی در اینجا هم وجود دارد، در اینجا شما تنها یک سطح توان را به نسبت 1mW محاسبه می کنید. 10dBm معادل 10mW، و 20dBm معادل 100mW و 30dBm معادل 1000mW (یا یک وات) است. 

در زیر مقادیر حدودی برخی نسبت های دسیبلی متداول آورده شده است.

30 dB is an increase of 1000X in power

20 dB is an increase of 100X in power

10 dB is an increase of 10X in power

6 dB is an increase of 4X in power

3 dB is an increase of 2X in power

2 dB is an increase of 1.6X in power

1 dB is an increase of 1.25X in power

0 dB is no increase or decrease in power

-1 dB is a decrease of 20% in power

-2 dB is a decrease of 37% in power (roughly a decrease of 1/3)

-3 dB is a decrease of 50% in power

-6 dB is a decrease of 75% in power

-10 dB is a decrease of 90% in power

-20 dB is a decrease of 99% in power

-30 dB is a decrease of 99.9% in power


پوستر اختصاص طیف الکترومغناطیس در دنیا.

برای دانلود این پوستر می توانید به کانال تلگرام انجمن مهندسی مایکروویو ایران مراجعه کنید و یا از لینک زیر دانلود نمایید.

دانلود پوستر



میدان مغناطیسی

در الکترو مغناطیس کلاسیک تعریف میدان مغناطیسی به صورت «میدان حاصل از بار الکتریکی در حال حرکت در اطراف آن» می‌باشد. به بیان ساده‌تر میدان مغناطیسی حاصل تأثیر دو میدان الکتریکی (مثلاً دو بار مثبت و منفی) بر روی هم است که منجر به درست شدن یک میدان مغناطیسی می‌شود.

میدان مغناطیسی از تک بارها، سیم‌های حامل جریان، جهت گیری دوقطبی‌های مغناطیسی (آهنرباهای دایمی)، جریان سیال رسانا (میدان مغناطیسی زمین) ایجاد می‌شوند.

نقشه ساده‌ای از میدان مغناطیسی کره زمین که منبع میدان مغناطیسی زمین را به صورت یک آهنربا نشان می‌دهد. قطب شمال زمین در نزدیکی بالای تصویر و قطب جنوب نزدیک پایین آن است. توجه کنید که قطب جنوب آهنربا در اعماق داخل زمین در زیر قطب جنوب مغناطیسی آن است. میدان مغناطیسی زمین حاصل عبور جریان دائم الکتریکی در هسته مایع خارجی آن است

در الکترو دینامیک نسبیتی بین میدان الکتریکی و میدان مغناطیسی تفاوتی وجود ندارد و تعریف میدان الکترو مغناطیسی به صورت «اثر بار الکتریکی در اطراف آن» تعریف می‌شود. چون حرکت کاملاً نسبی در نظر گرفته می‌شود و نمی‌توان بین بار ثابت و بار متحرک تفاوتی قایل شد (متحرک بودن یا ثابت بودن برای ناظرهای مختلف تفاوت می‌کند). نیروی حاصل از این میدان را نیروی لورنتس می‌خوانند.

به بیانی دیگر میدان مغناطیسی میدانی است که توسط یک جسم مغناطیسی یا ذرات، و یا با تغییر میدان الکتریکی، تولید شده‌است و توسط نیرویی که روی دیگر مواد مغناطیسی و یا حرکت بار الکتریکی اعمال می‌شود شناسایی می‌شود. میدان مغناطیسی در هر نقطه ی داده شده توسط هر دو پارامتر جهت و شدت (یا مقاومت) مشخص می‌شود، که به عنوان یک میدان برداری شناخته می‌شود. اشیایی که خود میدان مغناطیسی تولید می‌کنند آهنربا نامیده می‌شوند. آهن‌رباها توسط نیروها و گشتاورهایی که توسط میدان‌های مغناطیسی تولید می‌کنند بر یکدیگر تاثیر می‌گذارند. آهن‌ربا معمولاً خود را در جهت میدان مغناطیسی موضعی تراز می‌کند. قطب‌نما‌ها از این اثر برای اندازه‌گیری جهت میدان مغناطیسی موضعی، تولید شده توسط زمین استفاده می‌کنند. ریاضیات پیچیده که میدان مغناطیسی یک شی را نشان می‌دهد با استفاده از خطوط میدان مغناطیسی نشان داده می‌شوند. این خطوط صرفاً یک مفهوم ریاضی است وبه صورت فیزیکی وجود ندارد. با این حال، برخی پدیده‌های فیزیکی از قبیل تراز شدن براده‌های آهن در یک میدان مغناطیسی، به مانند خطوط در یک الگوی مشابه با خطوط فرضی میدان مغناطیسی از جسم را تولید می‌کند. جهت خطوط میدان مغناطیسی که تراز دلخواه برای براده ی آهنی که بر روی کاغذی که بر روی یک نوار آهنربا قرار دارد، پاشیده شده‌است. نشان می‌دهد. جاذبه ی متقابل قطب مخالف براده آهن منجر به تشکیل خوشه‌های دراز از براده در امتداد خطوط میدان شده‌است.

جریان الکتریسیته و انتقال شار الکتریکی میدان مغناطیسی تولید می‌کند. حتی میدان مغناطیسی از یک ماده مغناطیسی را می‌توان به عنوان مدل حرکت شار الکتریکی الگو گرفت. میدان مغناطیسی نیز بر روی حرکت شار الکتریکی نیرو وارد می‌کند. میدان‌های مغناطیسی در داخل و با توجه به مواد مغناطیسی می‌تواند کاملاً پیچیده باشد. میدان مغناطیسی با مواد دیگر اثر متقابلی دارد، بنابر این میدان مغناطیسی متقابلی با مواد دیگر ایجاد می‌کند. شرح میدان مغناطیسی در داخل آهنربا شامل دو رشته جداگانه‌است که می‌تواند هر دو به نام میدان مغناطیسی، میدان مغناطیسی B و میدان مغناطیسی H نامیده شود. این ها توسط یک میدان سوم که توصیف حالت مغناطیسی مواد مغناطیسی در درون آن هاست، که مغناطیس کنندگی نامیده می‌شود تعریف می‌شود. انرژی مورد نیاز برای ایجاد میدان مغناطیسی می‌تواند زمانی که میدان از بین می‌رود اصلاح شود؛ و این انرژی می‌تواند، به عنوان «ذخیره شده» در میدان مغناطیسی در نظر گرفته شود. انرژی ذخیره شده در مواد مغناطیسی به مقادیر B و H بستگی دارد. میدان الکتریکی میدانی است که توسط شار الکتریکی ایجاد شده‌است و این میدان‌ها به طور تنگاتنگی به میدان های مغناطیسی مربوط می‌شوند؛ تغییر در میدان مغناطیسی میدان الکتریکی و تغییر در میدان الکتریکی میدان مغناطیسی تولید می‌کند. (رجوع کنید به الکترومغناطیس) ارتباط کامل بین میدان‌های الکتریکی و مغناطیسی و جریان و شار که آن ها را ایجاد می‌کنند، توسط مجموعه‌ای از معادلات ماکسول توصیف می‌شوند. با در نظرگرفتن این ارتباط خاص، میدان‌های الکتریکی و مغناطیسی دو جنبهٔ مرتبط از یک موضوع منفرد، به نام میدان الکترو مغناطیسی هستند. یک میدان الکتریکی خالص، در یک چارچوب مرجع، به عنوان ترکیبی از هر دو میدان الکتریکی و میدان مغناطیسی که در یک چارچوب مرجع حرکت می‌کند، مشاهده می‌شود. در فیزیک کوانتومی، میدان مغناطیسی خالص (و الکتریکی) را توسط اثرات ناشی از فوتون‌های مجازی می‌توان درک کرد و در زبان مدل استاندارد، نیروی الکترومغناطیسی در تمام مظاهر توسط فوتون واقع می‌شود. در اغلب موارد این شرح میکروسکوپی مورد نیاز نمی‌باشد چرا که نظریه ی کلاسیک ساده، قانع کننده‌است؛ تفاوت تحت میدان با انرژی پایین تر در اکثر شرایط قابل اغماض است.

میدان‌های مغناطیسی در جوامع قدیمی و مدرن استفاده‌های بسیار داشته‌است. زمین میدان مغناطیسی خود را تولید می‌کند؛ که در جهت یابی ای که توسط قطب شمال قطب نما که به سمت قطب جنوب میدان مغناطیسی زمین منحرف شده‌است، بسیار حایز اهمیت است. از چرخش میدان مغناطیسی در موتور الکتریکی و ژنراتور بهره گرفته شده‌است. نیروهای مغناطیسی ارائه دهنده ی اطلاعاتی در مورد حرکت شار از طریق اثر هال هستند. تداخل میدان‌های مغناطیسی در دستگاه‌های برقی مانند ترانسفورماتورها در نظم حوزه‌های مغناطیسی مورده مطالعه قرار گرفته‌اند. مطالعه میدان مغناطیسی به عنوان یک موضوع مجزا از آهنربا در قرن ۱۳ هنگامی که پترو پرگرینوس د ماریکور میدان مغناطیسی آهنربای کروی را مطالعه کردو فرض نمود که زمین خود یک آهنربا است. آغاز شد. تمایز مدرن بین میدان‌های B و H در قرن ۱۹ کشف شد. رابطه بین میدانهای الکتریکی و مغناطیسی در مجموعه‌ای از معادلات ماکسول در نیمه دوم قرن ۱۹ میلادی کشف شد؛ و مفهوم الکترومغناطیس متولد شد. روندی که در پشت معادلات ماکسول قرار داشت در نیمه اول قرن ۲۰ مشخص شد، هنگامی که ارتباط خاص آن ها نشان داده شد.. شرح کاملی از الکترومغناطیس، الکترودینامیک کوانتومی و یا QED نامیده می‌شود، که شامل مکانیک کوانتومی که در اواسط قرن ۲۰ کشف شد، است.


فراخوان مقاله WAMICON 2017

موسسه IEEE فراخوانی برای ارسال مقالات به کنفرانس IEEE WAMICON 2017 داده است. 

برای اطلاعات بیشتر به سایت این کنفرانس مراجعه کنید.