در این مقاله می خواهیم نشان دهیم که در کاربردهای پالسی باید توجه بیشتری به ESR خازن ها داشت. در حالت خازن های الکترولیتی که در یک فرستنده پالسی مورد استفاده قرار بگیرند، ESR مربوط به یک خازن 4.7uF حدود یک اهم است. مقاومت معادل سری در خازن های سرامیکی به شدت وابسته به ولتاژ هستند، ولی در الکترولیت ها تقریبا ثابت است. اغلب بر فرستنده های پالسی، معمولا نیاز دارید که یک مدار مدولاتور طراحی کنید تا پیک جریان های بالا، با rise time و fall time بسیار سریع، را برای تقویت کننده فراهم کند. منبع تغذیه به اندازه کافی دور از تقویت کننده قرار می گیرد، به همین دلیل نمی تواند منبع خوبی برای جریان های پالسی باشد. به همین دلیل خازن های discharge این کار را برای ما انجام می دهند.
در شکل زیر یک سیستم ذخیره سازی بار رو مورد بررسی قرار داده ایم، هنگامی که جریان منبع تغذیه به خوبی از بانک خازنی ذخیره ساز بار جدا شده است. خازن ها درست در کنار مدار مدولاتور قرار گرفته اند، و تقویت کننده را برای 10uS روشن و سپس برای مدت 40uS خاموش می کنند. جریان مستقیم منبع تغذیه 0.2 آمپر است (پیک جریان ضرب در duty factor). خازن ها 0.8 آمپر را در حین تولید پالس تامین می کنند، و با جریان 0.2- آمپر در زمان خاموشی تقویت کننده شارژ می شوند (یعنی مقدار بار خروجی = مقدار بار ورودی).
اثر افت ولتاژ: مقدار ولتاژ بانک خازنی ذخیره کننده بار با مقدار خازن معادل سری اش کاهش می یابد. برای مقدار خالص ESR شما باید ESR تمامی خازن ها را به صورت موازی محاسبه کنید. معمولا فرض می کنیم که ESR همه خازن ها برابر باشد (ولی در واقعیت ممکن است برابر نباشند). ولی خازن ها معمولا با ماکزیمم ESR خود بیان می شوند پس طراحی با مقدار داده شده حاشیه امنی برای ما ایجاد خواهد کرد.
در مثال بالا اگر ذخیره ساز بار 1 اهم ESR داشته باشد، باعث ایجاد یک ولت افت ولتاژ در سیستم خواهد شد. بنابراین اگر بخواهید یک تقویت کننده GaAs با ولتاژ درین 8 ولت را تغذیه کنید باید به آن 9 ولت متصل کنید.
اثر تلفات توانی: توان تلف شده در یک مقاومت برابر با توان دوی مقدار RMS شکل موج جریان پالسی ضرب در مقاومت ESR است. این مقدار برای N خازن در عدد N ضرب خواهد شد.
اکنون نیاز داریم که جریان RMS شکل موج را حساب کنیم. به منظور محاسبه جریان RMS نیاز داریم که مقدار میانگین زمانی توان دوم جریان را محاسبه کرده و سپس از آن جذر بگیریم. این کار با استفاده از انتگرال گیری از شکل موج جریانی قابل انجام است. ولی برای جریان های پالسی مربعی، اینکار به راحتی و ذهنی انجام خواهد شد.
در هنگام جریان پالسی، منبع تغذیه به صورت کلی از خازن ذخیره کننده بار جدا شده است، خازن جریان پیک مورد نیاز منهای جریان میانگین I1 را تامین می کند:
هنگامی که فرستنده خاموش است، خازن با جریان I2 شارژ می شود:
اکنون میانگین زمانی مربع جریان را محاسبه می کنیم تا مقدار جریان RMS را بدست بیاوریم. معادلات زیر محاسبات را قدم به قدم نشان می دهند.
اکنون که جریان RMS محاسبه شده است، می توانیم میزان تلفات ناشی از ESR را محاسبه کنیم:
در نهایت نگاهی به میزان جریان RMS به عنوان درصدی از جریان پیک می کنیم. برای تقویت کننده ای که به طور کامل خاموش یا روشن است (DF=100% یا DF=0%)، خازن هیچ جریانی را تامین نمی کند. ماکزیمم جریان هنگامی اتفاق می افتد که DF=50% باشد (موج مربعی). در DFهای 25% و 75% نسبت 3/16 است.
اکنون مقدار تلفات را در مثال محاسبه می کنیم. جریان پیک 1 آمپر، DF=20% و خازن جریان 0.32 آمپر RMS را تامین می کند. میزان تلفات 102mW است. به نظر می آید در این حالت مشکل خاصی نداشته باشیم. اگر شما بخواهید خازنی برای تامین جریان پیک 10 آمپر استفاده کنید، میزان تلفات به 10 وات می رسد.