مهندسی میدان و مایکروویو

انجمن مهندسی مایکروویو ایران

مهندسی میدان و مایکروویو

انجمن مهندسی مایکروویو ایران

ُسیرکولاتورها و ایزولاتورها

چرا سیرکولاتورها و ایزولاتورها در دنیای ارزان قیمت میکروالکترونیک به نسبت گران هستند؟ زیرا اغلب دست ساز بوده و به صورت دستی تیون و تست می شوند. تلورانس موجود در ویژگی های فریت ها و مگنت ها و هم چنین تلورانس ساخت مکانیکی به این معنی است که همواره باید حداقل دستمزد را برای افزایش سرعت تولید افزایش داد. روش های تیونینگ در کارخانه های گوناگون متفاوت است. 

یک سیرکولاتور یک قطعه ی فریتی (فریت ها خانواده ای از مواد هستند که دارای خواص مغناطیسی منحصر به فردی هستند) با معمولا سه پورت است. مسئله جالب در ارتباط با سیرکولاتورها این است که آن ها غیر هم پاسخ هستند. یعنی انرژی ورودی در پورت 1، عمدتا به پورت 2 می رود و انرژی ورودی به پورت به پورت 3 می رود. انرژی ورودی به پورت 3 نیز به پورت 1 می رود. در یک قطعه یا ساختار هم پاسخ همان فرآیند شارش انرژی از پورت 1 به پورت 2 باید در جهت مخالف از پورت 2 به پورت 1 نیز اتفاق بیافتد. 

انتخاب پورت ها اختیاری بوده و سیرکولاتورها را می توان به صورت ساعتگرد و یا پادساعتگرد ساخت. علاوه بر فریت برای ساخت یک سیرکولاتور به آهن ربا نیز نیاز داریم. 

سیرکولاتورها به صورت موجبری، کواکسیالی و مایکرواستریپی وجود دارند. سیرکولاتورهای مایکرواستریپی غالبا در ماژول های گیرنده/فرستنده به منظور اتصال آن ها به آنتن مورد استفاده قرار می گیرد. موجبرهای همیشه کمترین تلفات و بیشترین قابلیت های توانی را فراهم می کنند. در شکل زیر یک سیرکولاتور موجبری باند ku نشان داده شده است:

به یک سیرکولاتور گاهی دوپلکسر duplexer نیز گفته می شود، یعنی دو سیگنال را از یک مسیر و کانال عبور می دهد ( ارسال توسط و دریافت از یک آنتن) . این اصطلاح را نباید با دیپلکسر diplexer اشتباه کرد. دیپلکسر به فیلترهایی گفته می شود که دو باند فرکانسی را بر روی یک کانال ارسال ارسال و یا از یک کانال دریافت می کنند. دیپلکسرها نیز یک قطعه سه پورتی هستند. بسیاری از مردم این دو را با یکدیگر اشتباه می گیرند. برای به خاطر سپردن این دو به این نکته توجه داشته باشید که filter  diplexer هر دو کلمه i را دارند. circulator و duplexer هر دو دارای کلمه u هستند. 

سیرکولاتورها به چه کار می آیند؟ ارائه بهترین قطعه برای اتصال آنتن به فرستنده و گیرنده. سیگنال از سمت فرستنده (پورت 1) به سمت آنتن (پورت 2) در هنگام ارسال می رود، و از سمت آنتن (پورت 2) به سمت گیرنده (پورت 3) در هنگام دریافت می رود. سیرکولاتورها دارای تلفات الکتریکی بسیار کمی بوده و می توانند برای توان های بسیار بالا (کیلووات) نیز ساخته بشوند. آن ها معمولا در پهنای باندی حدود یک تا چندین اکتاو کار می کنند. و قطعاتی کاملا RF (در DC کار نمی کنند) هستند. 

نکته: ایزولاسیون یک سیرکولاتور برابر با تلفات بازگشتی آن است. یک سیرکولاتور با 20dB ایزولاسیون دارای تلفات بازگشتی 20dB است. به این موضوع فکر کنید که اگر پورت سوم را به یک بار 50 اهم متصل کنید، ایزولاسیون ساعتگردی که در یک سیرکولاتور پادساعتگرد اندازه گیری می کنید، بهتر از سیگنال بازگشتی از پورت بارگذاری شده، بدلیل عدم تطبیق به 50 اهم، نخواهد بود. 


ایزولاتور: با اتصال یک پورت سیرکولاتور به بار تطبیق، یک ایزولاتور ساخته می شود. این ساختار انرژی را تنها در یک جهت عبور می دهد. این قطعه ی بسیار مفیدی برای مجزا کردن قطعات متفاوت در یک زنجیره است. ایزولاتور یک شبکه پسیو و غیر هم پاسخ است. 

در شکل زیر یک ایزولاتور موجبری باند Ka نشان داده شده است. 

سیرکولاتورها و ایزولاتورها را می توان از 100ها مگاهرتز تا 110 گیگاهرتز ساخت. آنها را می توان به صورت ساختارهای صفحه ای مایکرواستریپی، ساختارهای کواکسیالی، و یا موجبری ساخت. سیلکولاتورها و ایزولاتورهای موجبری دارای بهترین ویژگی های الکتریکی و الکترومغناطیسی هستند. این ساختارها دارای تلفات عبوری کمتر از 0.2dB نیز هستند. ایزولاتور و سیرکولاتورهای مایکرواستریپی و کواکسیالی دارای تلفاتی بین 0.5dB تا 1dB هستند. توجه داشته باشید که هر چه پهنای باند بیشتری بخواهید، ایزولاسیون کمتر و تلفات عبوری بیشتری خواهید داشت. 

سیرکولاتورهای سوئیچی: یک خانواده جالب از سیرکولاتورها بوده که با استفاده از یک سیگنال الکتریکی می توان جهت سیرکولاتور را از ساعتگرد به پادساعتگرد و برعکس تغییر داد. 


کانال تلگرام

صفحه Linkedin

طراحی آنتن

مهندسین آنتن شبیه باقی ما نیستند، آن ها زندگی ساده ای با طراحی ساختارهای یک پورتی، پسیو خطی دارند. در حالیکه بقیه ما با مدولاسیون سیگنال بزرگ، تبدیل فرکانس، تحلیل زمانی، ضریب پایداری، دمای کانال، عدد نویز و غیره سر و کار داریم. 
برخورد با 377 اهم: سوالی در ذهن ما در ارتباط با آنتن وجود دارد، امپدانس هوا 377 اهم است، چرا آنتن نیز برای دستیابی به بهترین انتقال توان، دارای امپدانس 377 اهم نیست؟ جوابی که به ذهن ما میرسد این است (اگر اشتباه می کنیم، جواب صحیح را برای ما ارسال کنید). به نظر می رسد که آنتنی با امپدانس 377 اهم خیلی عالی و مناسب است، ولی نیاز به یک سیستم با امپدانس بالا (377 اهم) داریم که به آنتن تطبیق باشد. بنابراین آنتن خودش به عنوان یک مبدل و تطبیق کننده امپدانس عمل می کند. با تبدیل امپدانس، به صورت ایده آل هیچ توانی تلف نشده و مولد(فرستنده)  به بار (فضای آزاد) متصل می شود. در مورد رادیوهای FM، اغلب آنتنی که به رادیو متصل می شود، یک دیپل بوده که دارای امپدانس 300 اهم است. ولی این یک استثنا برای ما به حساب می آید. 
به عنوان توضیح بیشتر می توان بیان کرد: دلیلی که امپدانس آنتن های 377 اهم نیست، این است که کسی در سرزمین RF تصمیم گرفت که امپدانس 50 اهم برای کار عدد مناسبی است. در واقع آنتن مبدل امپدانسی است که تلاش می کند امپدانس استاندارد سیستم های متداول (50 اهم) را به امپدانس 377 اهم هوا تطبیق کند. در واقع استاندارد 50 اهم، توازنی بین ماکزیمم توان انتقالی (ماکزیمم در 30 اهم) و تلفات اندک (مینیمم در 77 اهم) برای کابل کواکسیال با دی الکتریک هوا است. 
در ذیل با معرفی برخی مفاهیم ابتدای آنتن های شروع می کنیم:
تشعشع کننده: عنصر اولیه و ابتدایی هر آنتن. هر آنتن می تواند از چندین تشعشع کننده تشکیل شده باشد. 
Boresight:  جهتی که آنتن را به قصد بیشترین دریافت انرژی الکترومغناطیسی  قرار می دهیم. 
Boresight Error (BSE): قاعدتا ماکزیمم چگالی تشعشعی باید در Boresight اتفاق بیافتد، ولی در دنیای آنالوگ هیچ چیز به طور کامل کار نمیکند. همیشه اندکی انحراف وجود دارد. تفاوت زاویه ی که بورسایت فیزیکی یا اپتیکی با بورسایت الکترومغناطیسی، خطای بورسایت نامیده می شود. این زاویه هنگام دنبال کردن سیگنال رادار بسیار اهمیت دارد. 
Range: فاصله شعاعی از آنتن تا جسم، به ویژه در رادار. آنتن در راستای Azimuth و Elevation سیستم مختصات کروی ای تشکیل داده که برای تحلیل آنتن استفاده می شود. 
Azimuth: زاویه از راست به چپ از یک نقطه مرجع، از 0 تا 360 درجه و یا 180- تا 180 درجه. زاویه Azimuth معمولا با حرف یونانی phi نشان داده می شود. 
Elevation: زاویه با صفحه افقی از 90- تا 90 درجه. با توجه به سیستم مختصات کروی زاویه با محور z.
هم پاسخی : هم پاسخی به این معنی است که آنتن به همان صورتی که ارسال می کند، دریافت نیز می کند. 
پترن آنتن: پترن آنتن، یا پترن تشعشعی، یک گراف دو بعدی (یا سه بعدی) بوده که نشان دهنده تغییرات زاویه ای در یک پارامتر آنتن، مانند شدت میدان الکتریکی در ناحیه میدان دور، است. پترن معمولا در مختصات قطبی و بر حسب dB رسم می شود. 
تشعشع شده کننده ایزوتروپیک: به لحاظ تئوری تشعشع کننده ای که پترن ارسالی و یا دریافتی میدان های الکترومغناطیسی توسط آن در تمامی جهت ها یک سان است. و هیچ تلفاتی ندارد. در عمل هیچ تشعشع کننده ایزوتروپیکی وجود ندارد. 
تشعشع کننده همه جهتی (Omni-directional) : آنتنی که در تمامی زوایای Azimuth به صورت یکسانی تشعشع می کند. 
دیپل: یک نوع متداول از آنتن ها، در ساده ترین حالت اش، که شامل یک سیم بلند از وسط نصف شده که هر کدام از این سیم ها را می توان به یک رسانای خط انتقال متصل کرد. 
پهنای پرتو (Beam Width) : پهنای لوب اصلی که 3 دسیبل از ماکزیمم گین کمتر شده باشد. در شکل بالا پهنای پرتوی آنتن 60 درجه است. 
جهت ورزی (Directivity) : نسبت تشعشع الکترومغناطیسی در یک آنتن واقعی در زاویه ی AZ/EL (معمولا در زاویه بورسایت)  به تشعشع اش در تمامی زوایا که در یک کره میانگین گیری شده باشد. این اندازه گیری در میدان دور انجام می شود. 
جهت ورزی یک آنتن ایزوتروپیک که با شدت میدان مشابه در تمامی جهت ها در حال ارسال سیگنال است، 0dB می باشد. آنتن های جهتی در مقایسه با آنتن ایزوتروپیک سنجیده می شوند. چون این آنتن ها در یک جهت تشعشع می کنند، جهت ورزی آن ها وقتی بر حسب dB بیان می شود، مثبت است. جهت ورزی می تواند به عنوان تابعی از "دهانه موثر" آنتن و طول موج بیان شود:
راندمان: راندمان یک آنتن با توجه به تلفات اهمی سنجیده می شود، و برابر با تقسیم توان تشعشع شده به توان تشعشع شده توسط همان آنتن در حالت ایده آل و بی تلف محاسبه می شود. راندمان تابعی از زاویه AZ/EL نیست. 
بهره: ماکزیمم شدت سیگنال یک آنتن در زاویه مشخص AZ/EL، معمولا در زاویه BORESIGHT، نسبت به (معمولا) آنتن ایزوتروپیک، بر حسب dBi (dB from isotropic) بیان می شود. پهنای پرتو باریک تر دارای بهره ی بیشتر است. بهره برابر با جهت ورزی ضرب در راندمان است، یا جهت ورزی بعلاوه راندمان بر حسب dB.
بنابراین اگر شما شعاع یک روزنه را دو برابر کنید، و یا فرکانس کاری را دو برابر کنید، میتوانید بهره را چهار برابر نمایید ( یا 6dB افزایش دهید). 
در زیر یک رابطه برای محاسبه سر انگشتی بهره آنتن ارائه می کنیم: 
بهره آنتن برابر است با =27000 تقسیم بر (تتا1 ضربدر تتا2)
که در این رابطه تتا1 و تتا2 زوایای صفحات نصف توان به درجه هستند. 
میدان نزدیک: ناحیه نزدیک به آنتن جایی که میدان های الکترومغناطیسی از رابطه ساده (R/یک) تبعیت می کنند.
میدان دور: در ناحیه ای دور از آنتن جایی که چگالی توان الکترومغناطیس (در واحد سطح) با نسبت (2^R/یک) افت می کند. 
لوب های فرعی: پاسخ های دارای بهره ی ناخواسته آنتن، در راستاهایی غیر از راستای لوب اصلی آنتن.