به منظور طراحی ایده آل EMC-EMI باید شرایط واقعا ایده آل باشند به صورتی که در زیر نوشته ام. ولی به هر حال در عمل هیچ چیز ایده آل نیست.
1. همه چیز را درون جعبه های MU-METAL با آبکاری طلا قرار دهید.
2. در و جعبه باید به خوبی به هم وصل شده باشند. اگر می توانید آن ها را به هم جوش دهید. برای صرفه جویی و با توجه به اهداف اقتصادی می توانید هر دو اینچ و یا هر 1/4 طول موج را (هر کدام که کوچکتر بودند) جوش بدهید. توجه داشته باشید که جوش دادن حالت ایده آل است. ولی در عمل با گذاشتن پیچ مناسب در همین فواصل می توانید به خوبی انجام دهید. ولی بنابراین به خوبی EMC-EMI رعایت نمی شود.
3. از هیچ دستگاه الکتریکی ای استفاده نکنید. به جای آن از بخار استفاده کنید.
4. هیچ طراحی ای انجام ندهید که با سیم به جای دیگر متصل شده باشد. از سیگنال های مخابراتی، هیدرولیک، یا طناب استفاده کنید. اگر مجبورید از الکتریسیته استفاده کنید همه چیز را به زمین متصل کنید. حتی خطوط سیگنال را.
5. بر روی همه چیز فریت قرار دهید. حتی بر روی سیم ها. هر چه بزرگتر بهتر.
6. از موتورها استفاده نکنید، یک موش بر روی قفس چرخان گذاشته تا بدود و آن را بچرخاند، خود موش را به زمین متصل کنید. پس نمی توانید از نویز موتورهای الکتریکی و تغذیه ها سوئیچینگ کاملا خلاص شوید.
7. از دریچه های تهویه استفاده نکنید. باعث فرار سیگنال های RF می شوند.
8. همه چیز را به محکمی به صفحه زمین متصل کنید. حتی قطعات قابل حمل را.
9. نوارهای مسی یا آلومینیومی خوب نیستند. از بلوک های طلا استفاده کنید. شما می توانید این طلا را همیشه بفروشید، به خصوص اگر تست به خوبی جواب ندهد.
10. اگر مجبور هستید از منابع تغذیه استفاده کنید، حتما از باطری استفاده کنید.
11. عمق پوستی نقش مهمی در شیلدینگ EMI انجام می دهد. اگر ضخامت فلز شما به اندازه یک عمق پوستی باشد، 36% از میدان الکتریکی از باکس شما فرار می می کند. برای ضخامت جعبه و در حداقل از پنج عمق پوستی استفاده کنید تا EMI را به اندازه 40 دسیبل کاهش دهید.
قبل از اینکه درباره کاهش سطح مقطع راداری یک جسم صحبت کنیم، بهتر است درباره فیزیک پشت سطح مقطع راداری صحبت کنیم. در یک سیستم آنتنی جهت دار، بیشتر توان تشعشعی به صورت مستقیم و در جهت بهره آنتن ارسال می شود:
چگالی توان (S) که به هدف می رسد از رابطه زیر محاسبه می شود:
که در آن GT بهره آنتن و PT توان منتشر شده توسط آنتن است.
موج برخوردی به پراکنده کننده (SCATTERER- هدفی که تمایل به مخفی کردن آن دارید) باعث تحریک جریان هایی بر روی سطح شده که سپس این جریان ها در سطح جسم باعث ایجاد آنتی متناسب با ابعاد و اشکال جسم شده و با پترن خاص به خود تشعشع می کند. توان بازگشتی PR با معیار سطح مقطع راداری (RCS) اندازه گیری می شود. RCS به مساحت یک آینه ایده آل گفته می شود که توان را به سمت منبع منعکس می کند.
در این معادله AR مساحت گیرندگی آنتن است. مقدار کاهش توان متناسب با (R^4/ ) است. برای اینکه رنج شناسایی را نصف کنیم، مقدار تلفات بازگشتی شیئ به صورت زیر محاسبه می شود:
یک جاذب با مقدار 12dB تلفات بازگشتی به ما اجازه می دهد که دو برابر به یک رادار نزدیک تر شویم، در مقایسه با جسمی با 0dB تلفات بازگشتی، قبل از اینکه ما را شناسایی کند.
سطح مقطع راداری بیشتر توسط شکل جسم تعیین می شود، همان طور که در سه مثال زیر توضیح داده شده هنگامی که یک شیئ نسبت به طول موج برخوردی بزرگ باشد، زیرا این شکل جسم است که تعیین می کند چه میزان از توان برخوردی به شیئ مجددا به سمت منبع منعکس می شود. مثال سمت چپ بیانگر بازتابش آینه ای است، در این حالت بازتابش متناسب با (2^(lambda)/ یک) است. مثال وسطی نشان دهنده دامنه سیگنال بازگشتی از یک استوانه عمودی است. به سیلندرهایی که در نقاط ماکزیمم بازتابش هستند توجه کنید. با این حال، در زوایای معینی میزان بازتابش قابل توجهی وجود دارد. برای یک استوانه سیگنال بازگشتی متناسب با (lambda/یک) است. مثال سمت راست نشانگر یک کره است، که سیگنال را متناسب با شعاع کره (و نه تابعی از طول موج برخوردی) برمیگرداند.
زاویه شیئ بسیار مهم است. بدترین حالت زمانی اتفاق می افتد که موج برخوردی متعامد بر بخش مسطح شیئ باشد، که این امر باعث ایجاد انعکاس آینه ای خواهد شد.
هنگام طراحی برای RCS پایین به رفلکتورهای گوشه ای (corner reflector) توجه داشته باشید. گوشه ها و لبه های داخلی می توانند RCS تان را بیش از آنچه تصور می کنید، افزایش دهند.
اگر این اکو نیز تشعشع کند، نقش بسیار مهمی در میزان RCS خواهد داشت. این امر به دلیل انکسار رخ می دهد، که از ناپیوستگی های روی سطح ناشی می شود. ناپیوستگی ها باعث ایجاد تغییر در شرایط مرزی می شوند، و شرایط مرزی تعیین کننده میزان و نحوه ی توزیع میدان ها هستند. فلزات در فرکانس های رادیویی تقریبا مشابه رسانای الکتریکی کامل (PEC) عمل می کنند. یکی از شناخته شده ترین قوانین ماکسول بیان می کند که: میدان الکتریکی مماسی در سطح یک رسانا صفر است.
هنگامی که میدان الکتریکی مماسی صفر است، انرژی کجا می رود؟ به میدان مغناطیسی تبدیل می شود:
میدان الکتریکی در سطح فلزات معمولا عمود و میدان مغناطیسی مغناطیسی موازی سطح است. در بخش سایه میدان الکتریکی به سطح چسبیده و با سرعت نور بر روی سطح حرکت می کند. بارهایی با بار مخالف می مقدار برابر در سمت دیگر ایجاد شده که تقریبا هیچ استکترینگی ایجاد نمی کنند. در سمت دیگر ما شاهد موج های رونده که شامل امواج برخوردی و بازتابش میشوند، هستیم.
در حالت پولاریزاسیون افقی حاشیه های بیرونی اجسام، مانند بال های یک هواپیما، هستند که به شدت موجب پراکندگی موج می شوند. در لبه ها جریان های بسیار قدرتمندی ایجاد می شود که وظیفه ی آن ها تولید میدانی است که دقیقا میدان الکتریکی مماسی بر روی سطح را صفر کند. واضح است که عمل کاهش RCS برای لبه های بیرونی متفاوت است.
امواج الکترومغناطیس توسط جریان و بار متغیر با زمان به وجود می آیند. اثر متقابل و تداخل و تعامل امواج الکترومغناطیس با مواد گوناگون از شرایط مرزی قوانین ماکسول تبعیت می کند. امواج الکترومغناطیس می توانند توسط یک ساختار (خطوط انتقال) و یا فضای آزاد هدایت شوند. آنتن ساختاری است که میدان های الکترومغناطیسی را از یک منبع به سمت محیط پیرامون، و یا به صورت هم پاسخ، امواج را از محیط پیرامون به گیرنده هدایت می کنند. شکل و ابعاد آنتن انتقال از ناحیه میدان نزدیک به میدان دور را تعیین می کند.
رفتار میدان نزدیک به طور واضحی در اطراف یک آنتن کوچک دیده می شود، دیپل الکتریکی یک شیئ خازنی است:
میدان های نزدیک شامل میدان های نزدیک راکتیو، با نام میدان های نزدیک شبه استاتیک نیز شناخته می شوند، و میدان های نزدیک تشعشعی که با ناحیه فرزنل نیز شناخته می شوند. در میدان های نزدیک شبه استاتیک مشاهده می شود که میدان ها به شدت مشابه میدان های الکترواستاتیک یک دیپل شارژ شده برای یک آنتن دیپل و میدان های مغناطیسی یک دیپل مغناطیسی برای یک آنتن حلقه ای (loop antenna) هستند. در آنتن های بزرگ میدان های شبه استاتیک در نزدیک لبه های آنتن قابل مشاهده هستند.
در ناحیه فرزنل امواج به صورت مشخصی غیر صفحه ای و ممکن است دارای اختلاف فازی باشند که به صورت خطی با فاصله از آنتن تغییر نکند.
از ناحیه میدان نزدیک به سمت میدان دور، تشعشعات الکترومغناطیسی از حالت امواج کره ای به امواج صفحه ای تغییر حالت می دهند. میدان های دور معمولا ناحیه فرانهوفر نامیده می شوند.
اگر فاصله شما از آنتن بیشتر از 2d^2/lambda باشد، شما در ناحیه میدان دور قرار دارید.
حلقه کوچک در یک دیپل مغناطیسی یک شیئ مغناطیسی است.
در تمامی آنتن های کوچک به لحاظ الکتریکی (کوچکتر از یک طول موج) میدان های نزدیک در محیطی که آنتن قرار دارد، به وجود می آیند. این آنتن به همراه محیط اطرافش است که باعث تشعشع امواج الکترومغناطیس می شود. آنتن های کوچک به لحاظ الکتریکی شامل موارد زیر هستند:
قبل از اینکه به میدان های نزدیک بپردازیم، بهتر است که رفتار میدان های دور را درک کنیم. میدان های الکترومغناطیسی در ناحیه دور از منبع به صورت مسطح بوده و می توان آن ها را امواج صفحه ای در نظر گرفت. چگالی توان به صورت زیر محاسبه می شود:
Ptransmitted/Area spread out = W/m2
در ناحیه میدان دور، میدان های الکتریکی و مغناطیسی متناسب با (شعاع/1) هستند. بردار پوینتیگ (مساحت/توان) با رابطه (E cross H) بیان می شود. بنابراین چگالی توان با نسبت (2^(شعاع)/1) کاهش می یابد.
آنتن هایی که به صورت الکتریکی بزرگ هستند، منابع بسیار خوبی برای تولید امواج صفحه ای در آزمایشگاه می باشند. یک آنتن بزرگ توان را متمرکز می کند، به این عمل جهت ورزی (directivity) و یا بهره جهتی (directive gain) گفته می شود. در زیر مثال هایی از آنتن های بزرگ آورده شده است.
مقالات بسیاری در زمینه تکنولوژی 5G ارائه شده است. در زیر می توانید به لینک دانلود برخی از آن ها دسترسی پیدا کنید.